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SUMMARY
Modern clinical trials can capture tens of thousands of clinicogenomicmeasurements per individual. Discov-
ering predictive biomarkers, as opposed to prognostic markers, remains challenging. To address this, we
present a neural network framework based on contrastive learning—the Predictive Biomarker Modeling
Framework (PBMF)—that explores potential predictive biomarkers in an automated, systematic, and unbi-
ased manner. Applied retrospectively to real clinicogenomic datasets, particularly for immuno-oncology
(IO) trials, our algorithm identifies biomarkers of IO-treated individuals who survive longer than those treated
with other therapies. We demonstrate how our framework retrospectively contributes to a phase 3 clinical
trial by uncovering a predictive, interpretable biomarker based solely on early study data. Patients identified
with this predictive biomarker show a 15% improvement in survival risk compared to those in the original trial.
The PBMF offers a general-purpose, rapid, and robust approach to inform biomarker strategy, providing
actionable outcomes for clinical decision-making.
INTRODUCTION

The promise of precision medicine lies in treating patients with

therapies that precisely target their unique diseases.1,2 Key to

this approach are predictive biomarkers that identify individuals

more likely to benefit from a specific therapy. Predictive bio-

markers differ from prognostic biomarkers, as the latter relate

to general disease outcomes regardless of treatment. While

prognostic biomarkers provide insight into disease progres-

sion, predictive biomarkers are crucial for optimizing clinical

trial design to evaluate treatment effectiveness and ensure pa-

tients receive therapies that maximize survival outcomes and

quality of life. For example, breast cancer patients with HER2

overexpression experience improved progression-free and

overall survival on anti–HER2 antibodies compared to those

who are HER2-negative.3,4 Similarly, the BCR-ABL1 fusion

gene is predictive of response to tyrosine kinase inhibitors in

chronic myeloid leukemia.3,5 Drug development programs inte-

grating patient preselection biomarkers have a striking 2-fold

increase in the likelihood of approval.6 This is particularly im-

pactful in oncology where 90% of therapies entering clinical

development fail to reach market approval.7

Discovering predictive biomarkers is a complex and chal-

lenging endeavor due to the complex interactions between dis-

ease biology and treatments, especially for immunotherapies,
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which modulate the immune system rather than the tumor, and

therefore lack an obvious molecular biomarker hypothesis. The

advent of next-generation sequencing technologies providing

large-scale profiling of gene mutations, transcript expression,

and protein have both increased the opportunity to find predic-

tive biomarkers as well as further complicated the task.8 With

this increasingly available high dimensional data, the redun-

dancies inherent in biological systems can result in multiple fea-

tures being predictive of response. Moreover, the presence of

numerous prognostic factors may hinder pinpointing the predic-

tive biomarker within the studied patient population. Traditional

regression methods such as Cox proportional hazards (PH)

modeling9 have been widely employed to discover predictive

biomarkers. However, these methods necessitate the explicit

enumeration of covariates and interactions, a task that becomes

impractical as the number of features increases, particularly in

scenarios involving a diverse set of clinical and -omic features.

Specifically for immuno-oncology (IO), validated predictive sin-

gle biomarkers such as PD-L1 expression,10 microsatellite insta-

bility,11 and tumor mutation burden (TMB)12 still imperfectly

enrich for responsive patients.

Composite biomarkers (i.e., potentially nonlinear combina-

tions of multiple clinical measurements) have recently been pro-

posed to improve therapeutic outcome predictions for IO.13–18

Methods have been developed to discover predictive, potentially
ay 12, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Schematic of the PBMF and its evaluation on simulated and real clinical datasets versus other methods

(A) The PBMF utilizes data of any modality collected for each sample from each of two treatment arms. The PBMF trains an ensemble of neural networks, each

independently trained on clinical trial data with a contrastive loss function. The loss is designed to enhance the differential impact of B+ versus B– in the treatment

group and concurrently minimize B+ influence over B– in the control arm. The ensemble of PBMF models is pruned to retain only those models whose per-

formance is similar. The PBMF then outputs a consolidated single biomarker score that enriches for longer time-to-event times (e.g., survival) only on the

treatment of interest.

(legend continued on next page)
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composite biomarkers without requiring explicit specification of

covariates and interactions. These approaches utilize algorithms

designed tomaximize the difference in target outcomes between

subgroupswith different treatments,19,20 but still encounter chal-

lenges. For example, subgroup identification based on differen-

tial effect search (SIDES)21 uses a decision tree to identify patient

subgroupswith significant differences in treatment effects.While

interpretable, SIDES cannot identify composite biomarkers with

nonlinear relationships. Virtual Twins (VT),22 on the other hand,

calculates treatment effects for each patient by training separate

models for treatment and control outcomes. While capable of

detecting nonlinear composite biomarkers, users must search

for a post-hoc cutoff to determine subgroups.

To address these limitations, we present the Predictive

BiomarkerModeling Framework (PBMF), a neural network-pow-

ered contrastive learning process guided by a novel training

objective. Here, we provide a diverse body of empirical evidence

showcasing the robust predictive biomarker discovery capa-

bility of the PBMF across various scenarios, including simulated

biomarker discovery, well-established clinical datasets for sur-

vival analysis, and real-world and randomized controlled clinical

trial data for various immunotherapies. Notably, the PBMF out-

performs existing approaches in subgroup identification within

both simulated and real datasets. We show how the PBMF

may retrospectively contribute to patient selection for two phase

3 clinical trials, using only single-arm early phase trial data with

synthetic control arms, leading to at least a 10% improvement in

efficacy versus the original trials. Furthermore, we illustrate how

the PBMF retrospectively contributes to patient selection in a

phase 3 clinical trial by uncovering a predictive biomarker based

solely on phase 2 trial data. This discovery leads to a 15%

improvement in efficacy in the original trial, achieved through a

straightforward decision tree generated via PBMF knowledge

distillation.

RESULTS

A contrastive learning framework to identify predictive
biomarkers
Neural networks can uncover complex, nonlinear relationships

between features and support diverse data types. The PBMF

employs a neural network-powered contrastive learning process

guided by a novel training objective (Figure 1A). Specifically, the

PBMF utilizes a ratio of treatment versus control effects that en-

ables direct learning of treatment-specific predictive, rather than

prognostic signals. The biomarker score cutoff and sample prev-

alence constraints are also components of the model’s training

objective, abrogating the need for post-hoc tuning. The frame-
(B) AUPRC for a simulated data test set comparing the PBMF, VT,22 and SIDES21 m

1 prognostic; training performed on 1000 data points, with 100 training-test sp

whiskers, 1.5x interquartile range; diamonds, outliers; dots, data points.

(C) Hazard ratios for PBMF, VT, and SIDESmethods across all 9 test datasets and

if they represent hazard ratios computed for biomarker groups within the same da

and minimum hazard ratios for each method, for a given biomarker status, B+ a

(D) Forest plot illustrating the performance comparison of PBMF, VT, and SIDES

95% confidence intervals (95% CI) from a Cox proportional hazards model fit to

shown to the left of the forest plot, where TRT = the treatment for which the pred

treatment (e.g., chemotherapy for TEMPUS).

See also Figures S1–S5, Tables S1, S2, S3, and S4.
work takes an ensemble approach by training multiple neural

networks to minimize overfitting. Finally, the PBMF includes an

optional step to distill the neural network outputs into an inter-

pretable decision tree, making the results clinically actionable.

A publicly available web app (Zenodo: https://doi.org/10.5281/

zenodo.14766044) contains a user-friendly PBMF framework

and tools for generating simulated data to benchmark models.

For method architecture and implementation details, see STAR

Methods details.

PBMF effectively identifies predictive biomarkers
across diverse clinical studies and simulations
We tested the ability of the PBMF to discover a composite pre-

dictive signal in the presence of a prognostic signal in synthetic

datasets representing realistic combinations of features and

time-to-event data (i.e., survival) that mirrored conditions

commonly encountered in real-world scenarios. We bench-

marked the PBMF against SIDES21 and VT,22 two established

methods with publicly available software, and that are designed

to identify patient subgroups more likely to respond to specific

therapies (Table S1). SIDES failed to solve any of the simulated

scenarios.

The synthetic data scenario comprised 3 features, 2 predictive

and 1 prognostic, where the predictive signal was present only as

a combination of the two predictive features (Figure S1A). The

PBMF yielded an area under the precision-recall curve (AUPRC)

of 0.918 ± 0.047 (mean ± standard deviation) and outperformed

VT (AUPRC = 0.858 ± 0.029) (Figure 1B). Real-world scenarios

often involve the presence of noninformative features, compli-

cating the extraction of the underlying predictive signal. In our

next benchmarking scenarios, we introduced additional features

containing randomnoise (nnoise=7,17, 37, 99). ThePBMFconsis-

tently outperformed VT (Figure S1B), and the performance differ-

ential between PBMF and VT was further widened by pruning

suboptimal models within the PBMF ensemble or by increasing

the training data sample size (Figures S1C–S1E). All subsequent

benchmarking was therefore performed using a pruned PBMF

ensemble (hyperparameters can be found in Table S2).

Having established the success of the PBMF in simulated sce-

narios, we benchmarked the PBMF, VT, and SIDES across a di-

versity of 9 clinical studies (Table 1), including real-world data,

various cancer and non-cancer indications, and phase 1, 2, and

3 IOclinical trials. Thesedatasets spanned adiversity of datamo-

dalities such as DNA, RNA, clinical, and demographic (Tables S3

and S4). Overall, the PBMF markedly outperformed all other

methods by consistently identifying predictive biomarkers (Fig-

ure 1C). We detail the results of our clinical study benchmarking

in the sections to follow.
odels trained on simulated training dataset containing 3 features (2 predictive,

lit replicates). Boxplot: centerline, median; box limits, quartile 1 and 3; box

across treatments for each biomarker status, B+ and B–. Points are connected

taset. Shaded areas correspond to the bounding box defined by the maximum

nd B–.

methodologies, applied to test datasets. Shown are the hazard ratios (HR) and

each treatment comparison within a biomarker status. Patient numbers (N) are

ictive biomarker was desired (e.g., IO for TEMPUS) and CTL = the comparator
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Table 1. Summary of clinical study and real-world data used in the present study

Training Test Disease Treatment Outcomes Features

Survival analysis datasets

Rotterdam study cohort26

(n = 863)

German study cohort27

(n = 686)

Breast cancer Hormone therapy + chemo

vs. chemo

Overall survival d Age

d Menopause

d Tumor size

d Tumor grade

d Number of nodes

d Progesterone receptor status

d Estrogen receptor status

Blair et al.28 study

(randomized half)

Blair et al.28 study

(randomized half)

Diabetic retinopathy (DR) Laser coagulation (n = 197)

vs. no treatment (n = 197)

Time to visual acuity

<5/200 for two

successive visits

d Age

d Diabetes type

d Risk score

Immune checkpoint inhibitor trials

JAVELIN Renal 101 phase

3 trial29 (randomized half)

JAVELIN Renal 101 phase

3 trial29 (randomized half)

Advanced renal cell

carcinoma (aRCC)

Avelumab (anti-PD-L1) + axitinib

(chemo) (n = 354) vs. sunitinib

(SoC) (n = 372)

Overall survival d PD-L1 status

d Expression of 59 TME and

pathway-related RNA

signatures (Table S4) based

on FFPE tumor tissue

RNA-seq

POSEIDON phase 3 trial31

(randomized half)

POSEIDON phase

3 trial31 (randomized half)

Metastatic non-small-cell

lung cancer (mNSCLC)

Durvalumab (anti-PD-L1) +

chemo (n = 114) vs. chemo

(n = 114)

Overall survival d Expression of 35 TME-related

RNA signatures based on

peripheral blood RNA-seq

(Table S4)

IMmotion150 phase

2 trial30 (randomized half)

IMmotion150 phase

2 trial30 (randomized half)

Metastatic renal cell

carcinoma (mRCC)

Atezolizumab (anti-PD-L1) +

bevacizumab (anti-VEGF)

(n = 83) vs. sunitinib

(anti-VEGF, SoC) (n = 81)

Overall survival d Age

d Sex

d Liver metastasis

d Previous nephrectomy

d T cell effector signature score

d Plasma IL8

d Sum of longest tumor

diameter

d Sample type

(primary/metastatic)

Real world data

Tempus NSCLC cohort

(randomized half)

Tempus NSCLC cohort

(randomized half)

NSCLC Anti-PD-1 or anti-PD-L1

(n = 117) vs. chemo (n = 84)

Overall survival d Expression of 50 cancer

Hallmark gene sets (MSigDB

C5)45 based on RNA-seq of

pre-treatment tumors

(Continued on next page)
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Table 1. Continued

Training Test Disease Treatment Outcomes Features

Synthetic control arm trials

Checkmate-010 single-arm

phase 2 trial36 (n = 25) + random

selection of control arm of

Checkmate-025 phase

3 trial37 (n = 25)

Checkmate-009 phase

1 trial38 + Checkmate-025

phase 3 trial37 (n = 149;

excludes those used for

training)

Clear cell renal

carcinoma (ccRCC)

Nivolumab (anti-PD-1) vs.

everolimus (mTOR inhibitor)

Overall survival d Expression of 3 immune-

related RNA signatures

(Table S4) based on FFPE

tumor tissue RNA-seq

d Copy number variations of 24

DNA segments (Table S4)

based on FFPE tumor tissue

whole-exome sequencing

d Mutations in 11 genes

(Table S4) based on FFPE

tumor tissue whole-exome

sequencing

IMvigor210 single-arm phase

2 trial39 (n = 119) + random

selection of control arm of

IMvigor211 phase 3 trial40

(n = 100)

IMvigor211 phase 3 trial40

(n = 472; excludes those

used for training)

Metastatic urothelial

carcinoma (mUC)

Atezolizumab (anti-PD-L1)

vs. chemo

Overall survival d Age

d Sex

d Liver metastasis

d ECOG performance status

d IL8 plasma level at

baseline (C1D1)

d IL8 plasma level after

treatment (C3D1)

d IL8 plasma ratio (C3D1/C1D1)

Phase 2 to predict phase 3 trials

POPLAR phase 2 trial41

(n = 206)

OAK phase 3 trial42

(n = 638)

NSCLC Atezolizumab (anti-PD-L1)

vs. docetaxel

Overall survival d Age

d Sex

d ECOG performance status

d Sum of longest diameter of

target lesions at baseline

d Number of metastatic sites

at enrollment

d Histology

d Smoking history

d Maximum somatic allele

frequency

d Blood tumor mutational

burden

d ctDNA mutations of 20 most

prevalent genes (Table S4)

See also Figure S1, Tables S1, S2, S3, and S4. ll
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Identification of predictive biomarkers in commonly
used clinical datasets for survival analysis
We evaluated PBMF against VT and SIDES with well-character-

ized clinical datasets used in common practice for time-to-event

statistical modeling (specifically survival analysis).23–25 We uti-

lized datasets from breast cancer26,27 and diabetic retinopathy28

studies, as thesewere themost feature-rich and appropriate for a

predictive biomarker discovery task (see STAR Methods, exper-

imental model and study participant details for details on source

data origin).

First, we benchmarked the PBMF against VT and SIDES for

identifying a biomarker predictive of longer survival with hormone

therapy (tamoxifen) plus chemotherapy versus chemotherapy

alone across the two available independent breast cancer data-

sets. Models were trained on the Rotterdam breast cancer

cohort26 and subsequently tested on the German breast cancer

study cohort.27 On the training dataset, the PBMF (B+: hazard ra-

tio [HR] = 0.71, confidence interval [CI] = 0.54–0.94, p = 1.69e-2;

B–: HR = 1.91CI = 1.48–2.48, p = 9.37e-7) and VT (B+: HR = 0.56,

CI = 0.44–0.70, p = 4.98e-7; B–: HR = 1.81, CI = 1.30–2.52, p =

4.32e-4) methods successfully identified a predictive biomarker,

whereas SIDES found a prognostic biomarker (Figures 1D, S2,

and 2A). On the test dataset, only the PBMFgeneralized as a pre-

dictive biomarker (B+: HR= 0.63, CI = 0.48–0.83, p= 1.02e-3; B–:

HR = 0.89, CI = 0.50–1.57, p = 6.84e-1), whereas both VT and

SIDES were prognostic.

We next benchmarked the PBMF against VT and SIDES for

identifying a biomarker predictive of longer time to vision loss

with laser therapy versus no treatment in a study for treating dia-

betic retinopathy.28 On the training split of the data, the PBMF

(B+: HR = 0.27, CI = 0.13–0.55, p = 3.67e-4; B–: HR = 0.69,

CI = 0.38–1.24, p = 2.13e-1) identified the strongest predictive

biomarker (Figure S2). VT (B+: HR = 0.38, CI = 0.21–0.70, p =

1.88e-3; B–: HR = 0.55, CI = 0.28–1.09, p = 8.81e-2), and

SIDES (B+: HR = 0.38, CI = 0.09–1.52, p = 1.71e-1; B–: HR =

0.46, CI = 0.29–0.74, p = 1.51e-3) found mostly prognostic

biomarkers (Figures S2A and S2B). In particular, for VT, the

biomarker from the training data appears to enrich for reduced

time to vision loss within each treatment, which is opposite to

the desired behavior (Figure S2C). This therefore discounts the

otherwise favorable generalization of VT on the test split of the

data (Figures 1D and 2A). In contrast, the PBMF (B+: HR =

0.38, CI = 0.17–0.81, p = 2.26e-4; B–: HR = 0.55, CI = 0.29–

1.04, p = 6.62e-2) identified a predictive biomarker, albeit with

a prognostic component (Figures 1D and 2A).

Predictive biomarker identification in immune
checkpoint inhibitor therapies
Encouraged by our results from simulated biomarker scenarios

and well-established clinical datasets for survival analysis, we

asked whether the PBMF would excel over VT and SIDES in

the challenging predictive biomarker discovery space of im-

muno-oncology, specifically for immune checkpoint inhibitor

(ICI) therapy. We trained and tested models on each of three

phase 3 clinical trials (JAVELIN 101,29 NCT02684006; IMmotion

150,30 NCT01984242; POSEIDON,31 NCT03164616; see STAR

Methods, experimental model and study participant details for

details on source data origin) for three different ICI therapies

given in a first-line setting (avelumab, atezolizumab, durvalumab,
6 Cancer Cell 43, 1–16, May 12, 2025
respectively) for either renal cell carcinoma or non-small cell lung

cancer (NSCLC). SIDES failed to find a predictive biomarker on

the training data for IMmotion 150 and JAVELIN 101, whereas

both the PBMF and VT consistently found a predictive biomarker

on the training data for all three clinical trials (Figure S2).

On the test data for POSEIDON, only the PBMF identified

a predictive biomarker that generalized (Figures 1D and 2B;

B+: HR = 0.33, CI = 0.13–0.80, p = 1.4e-2; B–: HR = 1.10, CI =

0.67–1.80, p = 7.06e-1). When testing on JAVELIN 101, only

the PBMF (B+: HR = 0.52, CI = 0.33–0.80, p = 3.32e-3; B–:

HR = 1.03, CI = 0.68–1.56, p = 8.81e-1) generalized as a predic-

tive biomarker. The PBMF identified a B+ group characterized by

longer survivors in the avelumab + axitinib arm of interest versus

all other groups and arms (Figures 1D and 2B). Although VT ap-

pears to have found a generalizable predictive biomarker as well

(B+: HR = 0.43, CI = 0.28–0.65, p = 5.48e-5; B–: HR = 1.26, CI =

0.81–1.96, p = 3.10e-1), examination of the Kaplan-Meier plots

suggests that it instead identified a B+ group treated with the

control therapy, sunitinib, that hadworse survival versus all other

groups and arms (Figure 2B). Finally, when testing on IMmotion

150, the PBMF trended the best toward a predictive biomarker,

as it enriched for both for patients that had better survival across

treatments within the B+ group (HR = 0.49, CI = 0.13–1.92,

p = 3.08e-1), as well as across biomarker status within the ICI

treatment (Figure 2B). In contrast, although VT similarly trended

toward a predictive biomarker (Figure 1D), the B+ group across

treatments trended toward worse survival than the B– group

(Figure 2B).

In summary, PBMF demonstrated superior performance in all

three phase 3 clinical trials for immune checkpoint inhibitor ther-

apies, consistently identifying predictive biomarkers where

SIDES failed and VT misidentified beneficial groups. PBMF reli-

ably pinpointed patient groupswith improved survival outcomes,

highlighting its potential as a robust tool for predictive biomarker

discovery.

Predictive biomarker identification with real-world data
Randomized controlled phase 3 clinical trials are often consid-

ered the gold standard for tasks like predictive biomarker discov-

ery analysis; these datasets often take a significant amount of

time to accumulate and require substantial investments. With

the increasing availability of real-world data (RWD), we chose to

benchmark PBMF against VT and SIDES despite challenges

associated with the use of RWD, including issues related to

inconsistent data quality, comparability, and bias.32,33 To facili-

tate this comparison, we curated an NSCLC real-world data

cohort through a licensing agreementwith Tempus to specifically

to evaluate first-line ICI therapy versus chemotherapy.

On the training dataset, only the PBMF and VT yielded a

biomarker with predictive value for ICI over chemotherapy,

whereas SIDES exhibited a trend toward prognostic behavior

(Figure S2). On the test dataset, only the PBMF (B+: HR = 0.26,

CI = 0.09–0.71, p = 9.02e-3; B–: HR = 1.20, CI = 0.50–2.85, p =

6.86e-1) demonstrated enrichment for longer survivors specific

to ICI therapy, indicating the discovery of a predictive biomarker

that can generalize (Figures 1D and 2C). In contrast, VT failed to

generalize in the test dataset (B+: HR = 0.48, CI = 0.18–1.30, p =

1.49e-1; B–:HR=0.84, CI = 0.36–1.96,p=6.83e-1), despite very

strong predictive behavior observed in the training dataset. The
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Figure 2. Kaplan-Meier curves for evaluation of PBMF for predictive biomarker identification on real clinical datasets against other methods
(A–E) Kaplan-Meier curves per treatment and biomarker status (fromPBMF, VT, or SIDES), as evaluated on the (A) test data fromwell-established clinical datasets

for survival analysis (breast cancer26,27 and retinopathy28), (B) immuno-oncology clinical trial test data (POSEIDON,31 JAVELIN 101,29 and IMmotion 15030), (C)

TEMPUS real-world data test set, (D) clinical trial test data that utilized synthetic control arms (CheckMate 00938 + CheckMate 02537 and IMvigor 21140), and (E)

OAK42 phase 3 clinical trial test dataset. Timeline is in months. Hormone, hormone + chemotherapy; chemo, chemotherapy; atezo, atezolizumab; B, bev-

acizumab; aPD1, anti–PD-1 immunotherapy; aPDL1, anti–PD-L1 immunotherapy. Sample sizes (N) for biomarker-positive/negative and treatment/control groups

for each trial are provided in Figure 1D. p-values shown are derived from Wald tests.

See also Figures S2–S5.
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trend toward prognostic behavior failed to generalize for SIDES

(B+: HR = 1.17, CI = 0.29–4.72, p = 8.27e-1; B–: HR = 0.52, CI =

0.24–1.10, p = 8.72e-2).

Predictive biomarker discovery with synthetic
control arms
Early phase trials are often single-arm studies, complicating ef-

forts to derive biomarkers specific to a treatment of interest.

Recent FDA guidance suggests common34 or external35 control

arms might be used in certain settings to minimize redundancy,

especially for and motivated in large part by oncology drug dis-
covery. We therefore evaluated our approach in this ‘‘synthetic

control arm’’ scenario, whereby we used a fraction of phase 3

control arm data exclusively for model training alongside phase

2 single-arm trial data (see STAR Methods, experimental model

and study participant details for details on source data origin).

In the context of pre-treated advanced clear cell renal carci-

noma (ccRCC), PBMF, VT, and SIDES all identified a predictive

biomarker for ICI therapy on the training data from the nivolumab

armof phase 2CheckMate 01036 (NCT01354431) and a synthetic

control arm from a random subset of patients receiving everoli-

mus from phase 3 CheckMate 02537 (NCT01668784; Figure S2).
Cancer Cell 43, 1–16, May 12, 2025 7
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However, only the PBMF generalized to the test dataset on the

combined population from phase 1 CheckMate 00938 (NCT0135

8721) and phase 3 CheckMate 025 trials (Figures 1A and 2D

excluding those from CheckMate 025 used for training; B+:

HR = 0.60, CI = 0.38–0.96, p = 3.44e-2; B–: HR = 0.96, CI =

0.49–1.87, p = 9.12e-1). SIDES trended toward a prognostic

biomarker (B+: HR = 0.58, CI = 0.34–0.99, p = 4.75e-2; B–:

HR=0.82,CI =0.47–1.41,p=4.65e-1),whereasVTdidnotgener-

alize, as it displayedapredictivebiomarker for thecontrol arm (B+

HR = 0.85, CI = 0.51–1.44, p = 5.52e-1; B–: HR = 0.49, CI = 0.28–

0.96, p = 1.38e-2). Overall, the PBMF identified a B+ subpopula-

tion with a 12% decrease in risk of death when treated with nivo-

lumab versus everolimus, relative to the biomarker-evaluable

population (BEP) in the combined CheckMate 009 and 025 trials

(Figures 1D and S3; PBMF HR = 0.60; CheckMate 009 and 025

BEP HR = 0.68; CheckMate 025 BEP trial-reported HR = 0.69;

CheckMate 025 intent-to-treat HR = 0.73).

The PBMF also generalized well in an additional independent

cohort examining atezolizumab versus chemotherapy in locally

advanced or metastatic urothelial carcinoma (mUC). In this anal-

ysis, we included all available input features at baseline (age,

sex, ECOG, pIL-8 expression, and liver metastasis) and on-treat-

ment (pIL-8 after 6weeks) to evaluate their association with over-

all survival. On the training data from the atezolizumab arm from

phase 2 IMvigor21039 (NCT02951767, NCT02108652) and a syn-

thetic control arm from a random subset of patients receiving

chemotherapy from phase 3 IMvigor21140 (NCT02302807),

only the PBMF and VT but not SIDES yielded a biomarker with

predictive value of atezolizumab over chemotherapy (Figure S2).

Similarly, on the test dataset (IMvigor 211 excluding patients

used for the training synthetic control arm), both PBMF (B+:

HR = 0.73, CI = 0.54–0.99, p = 4.25e-2, B–: 0.87, CI = 0.66–

1.15, p = 3.14e-1) and VT (B+: HR = 0.71, CI = 0.53–0.95, p =

2.21e-2; B–: HR = 0.90, CI = 0.67–1.20, p = 4.59e-1) generalized

well as a predictive biomarker (Figures 1D and 2D). This corre-

sponded to a 10% and 12% decrease in risk of death, respec-

tively, when treated with atezolizumab versus chemotherapy,

relative to the BEP in the IMvigor 211 trial (Figures 1D and S3;

PBMF HR = 0.73; VT HR = 0.71; IMvigor 211 BEP HR = 0.81;

IMvigor 211 intent-to-treat HR = 0.85). These trends recapitulate

when, instead of using phase 1 data (one-arm, synthetic control),

using phase 2 data (two-arms)41 to predict phase 3 outcomes42

(Figure 2E) (B+: HR = 0.59, CI = 0.47–0.74, p = 4.26e-6; B–:

HR = 0.84, CI = 0.60–1.15, p = 2.27e-1). Both VT (B+: HR =

0.70, CI = 0.53–0.92, p = 9.95e-3; B–: HR = 0.62, CI = 0.48–

0.80, p = 2.27e-4) and SIDES (B+: HR = 0.64, CI = 0.37–1.11,

p = 1.13e-1; B–: HR = 0.66, CI = 0.54–0.80, p = 3.07e-5) yielded

only prognostic biomarkers.

Knowledge distillation from the PBMF neural network
produces a simple, interpretable decision tree
Clinical study biomarker strategy may require an interpretable

‘‘white-box’’ biomarker in order to be practically deployed. Uti-

lizing a consensus score across the models within a given

PBMF ensemble, we determined an optimal biomarker proba-

bility score cutoff to classify B+ and B– samples, subsequently

referred to as pseudo-labels (Figure 3A, STARMethods). These

pseudo-labels were then used to distill the complex, original

neural network ensemble PBMF model into a simple interpret-
8 Cancer Cell 43, 1–16, May 12, 2025
ablemodel—a decision tree. To further facilitate interpretability,

and to explore how the decision tree recapitulates the original

predictive biomarker, our framework includes an interactive

web app. Distilled decision tree PBMF biomarkers were gener-

ated for all clinical datasets evaluated in the present study

(Figures 3B, 3C, and S4A–S4F).

For the POSEIDON ICI study that utilized peripheral blood

gene expression signatures,43 B+ individuals were character-

ized by lower signature for tumor-associated macrophages

(TAMs) or higher signature for B cells (Figure 3B). Although these

signatures were computed on peripheral blood gene expres-

sion, the TAM signature level likely correlates with tumor macro-

phage levels, as only monocytes or traveling macrophages may

be found in the blood. Low levels of TAMs may correlate with

improved activity of ICI therapy.44 High B cell signature may

be indicative of overall immune health, which would permit a

favorable ICI therapy response. Subsequent splits in the tree

yielded a more strongly predictive biomarker (B+ HR = 0.21 at

depth = 5 vs. HR = 0.48 at depth = 2), despite maintaining similar

numbers of B+ individuals.

For the TEMPUS RWD cohort that utilized gene expression

signature scores computed from tumor RNA-seq across 50 hall-

mark gene sets (mSigDB C545; see STAR Methods), B+ individ-

uals were low for E2F hallmark signature or high IFN-g response

hallmark signature (Figure 3C). The E2F signature contains cell

cycle genes and therefore is expected to correlate with more

aggressive disease. High IFN-g has been previously associated

with ICI favorable outcomes,46 and helps steer the biomarker

from being prognostic (B+ HR = 0.71, B– HR = 0.65 at depth =

1) to being predictive (B+ HR = 0.26, B– HR = 0.91 at depth =

2). As with POSEIDON, subsequent splits in the tree yielded a

more strongly predictive biomarker (B+ HR = 0.21, B– HR =

1.23 at depth = 5), although the biological interpretation was

less straightforward.

A discovery pipeline for predictive biomarker
prototypes: Identification of individuals with improved
survival outcomes in early-stage clinical trial data to
inform phase 3 trial design
One critical application of predictive biomarker discovery is to

inform the patient selection strategy for phase 3 clinical trials by

using data from earlier phases. Given the consistent ability of

thePBMF to identify a predictive biomarker, particularly in clinical

trial settings, we devised an end-to-end biomarker discovery

pipeline that generates a human-understandable predictive

biomarker prototype, poised for translation into clinical settings.

As a sample use case for this pipeline, we sought to guide patient

selection for second-line atezolizumab therapy versus chemo-

therapy in NSCLC, relying solely on data from an earlier study.

Specifically, we identified clinicogenomic phase 2 trial data

(POPLAR,41 NCT01903993; Figure 4A) with which we trained a

PBMF model (Figures 1D, 2E, and 4B) to identify a predictive

biomarker (Figures 4B–4D and S5A–S5E; STAR Methods) that

was then tested on phase 3 trial data (OAK,42 NCT02008227; Fig-

ure S5E); see STAR Methods, experimental model and study

participant details for details on source data origin.

The PBMF identified a generalizable predictive biomarker

(Figures 1D, 2E, and 4B–4D); B+: HR = 0.59, CI = 0.47–0.74,

p = 4.26e-6; B–: HR = 0.84, CI = 0.60–1.15, p = 2.27e-1) when
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Figure 3. PBMF model distillation into interpretable decision trees facilitates understanding of biomarker

(A) High-confidence patient samples are identified through biomarker pseudo-labeling from biomarker scores generated from the pruned PBMF ensemble. These

then serve to construct an interpretable, simplified decision tree model, categorizing patients as B+ or B–.

(B) Example distilled PBMF decision tree (depth = 5) generated from POSEIDON31 training data that best recapitulated the original PBMF biomarker for the

dataset. Pathways are from Bagaev et al. 2021.43 Sample sizes (N) for biomarker-positive/negative and treatment/control groups for each trial are provided in the

figure. p-values shown are derived from Wald tests.

(C) Example distilled PBMF decision tree (depth = 5) generated from TEMPUS training data that best recapitulated the original PBMF biomarker for the dataset.

Pathways are MSigDB gene sets.45 KM curves are shown to reflect the nature of the biomarker at successive levels of depth. Line thickness is proportional to

number of patients in parentheses. Sample sizes (N) for biomarker-positive/negative and treatment/control groups for each trial are provided in the figure.

p-values shown are derived from Wald tests.

See also Figure S4.
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Figure 4. Application of PBMF in the design of biomarker-driven clinical trials

(A) Clinical trial data and endpoints collection: Kaplan-Meier curves for the discovery (POPLAR phase 2 clinical trial41) dataset. Sample sizes (N) for biomarker-

positive/negative and treatment/control groups for each trial are provided in the figure. p-values shown are derived from Wald tests.

(B) Identification of predictive biomarker: using the discovery dataset (POPLAR trial) the PBMF successfully finds a biomarker that identifies which patients will

survive longer on atezolizumab but not docetaxel. Sample sizes (N) for biomarker-positive/negative and treatment/control groups for each trial are provided in the

figure. p-values shown are derived from Wald tests.

(C) Refinement of predictive biomarker: the enhancement of the predictive biomarker involves pruning to eliminate spurious models from the ensemble, and

(D) subsequent derivation of a rule set (i.e., a decision tree) that encapsulates the biomarker’s predictive power. Line thickness is proportional to number of

patients in parentheses. Sample sizes (N) for biomarker-positive/negative and treatment/control groups for each trial are provided in the figure. p-values shown

are derived from Wald tests.

(E) Independent validation set, OAK Phase 3 trial42 (top), and patient stratification using the simplified predictive biomarker identified in the POPLAR trial and

subsequently applied to the OAK trial (bottom). Such independent dataset validation of the PBMF model affirms the biomarker’s predictive capacity, demon-

strating the model’s reliability from ensemble to simplified tree representation, thus reinforcing its utility in clinical trial stratification. Sample sizes (N) for

biomarker-positive/negative and treatment/control groups for each trial are provided in the figure. p-values shown are derived from Wald tests.

See also Figures S2, S3, S5, and Table S5.
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trained on POPLAR study data and subsequently applied as a

hypothetical patient selection biomarker for the phase 3 OAK

trial test data. Both VT (B+: HR = 0.70, CI = 0.53–0.92, p =

9.95e-3; B–: HR = 0.62, CI = 0.48–0.80, p = 2.27e-4) and

SIDES (B+: HR = 0.64, CI = 0.37–1.11, p = 1.13e-1; B–: HR =
10 Cancer Cell 43, 1–16, May 12, 2025
0.66, CI = 0.54–0.80, p = 3.07e-5) yielded only prognostic bio-

markers (Figures 1D and 2E). This was despite PBMF (B+:

HR = 0.30, CI = 0.19–0.48, p = 2.57e-7; B–: HR = 2.41, CI =

1.41–4.11, p = 1.25e-3) and VT (B+: HR = 0.38, CI = 0.24–0.60,

p = 3.72e-5; B–: HR = 1.14, CI = 0.72–1.78, p = 5.76e-1) having
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identified a predictive signal from the phase 2 POPLAR training

data; and SIDES having identified a mixed predictive and prog-

nostic signal within the training data (B+: HR = 0.42, CI = 0.14–

1.21, p = 1.08e-1; B–: HR = 0.75, CI = 0.54–1.05, p = 9.51e-2)

(Figure S2). Compared with the BEP in the OAK trial (Figure S3),

the PBMF B+ subpopulation yielded a �9% decrease in risk of

death for atezolizumab versus docetaxel treatment (PBMF,

HR = 0.59; OAK BEP HR = 0.65). Thus, to hypothetically inform

strategies for patient selection in phase 3 clinical trials, only the

PBMF successfully identified a predictive, high-prevalence

biomarker from phase 2 data that generalized to phase 3 results.

Having established a predictive biomarker with the pruned

PBMF ensemble, we distilled the biomarker into an interpretable

decision tree (Figure 4D). Like the original PBMF from which it

was derived, the distilled decision tree PBMF biomarker was

predictive when applied on all samples from the phase 2 trial

training data (Figure 4D; B+: HR = 0.46, CI = 0.3–0.7, p = 2.6e-

4; B–: HR = 1.34, CI = 0.8–2.2, p = 0.2). The distilled PBMF

was also predictive for phase 3 OAK trial test data (Figure 4E;

B+: HR = 0.55, CI = 0.43–0.7, p = 8.05e-7; B–: HR = 0.86, CI =

0.64–1.16, p = 0.3). Importantly, the OAK HR of the distilled de-

cision tree was improved by approximately 7% compared with

the original PBMF (original PBMF HR = 0.59; distilled decision

tree PBMF HR = 0.55; Figures 4E and S5E), owing to the reduc-

tion in prevalence from 80% to 64%. Notably, the original PBMF

had a �9% decrease in risk of death within the B+ atezolizumab

versus docetaxel-treated subpopulation relative to the BEP in

the OAK trial, and the distilled decision tree PBMF had a

�15% decrease in risk of death (distilled PBMF HR = 0.55; orig-

inal PBMF HR = 0.59; OAK BEP trial-reported HR = 0.65, OAK

intent-to-treat HR = 0.73).

Upon scrutinizing the decision tree of the distilled PBMF, we

observed that the predictive biomarker comprised a specific

subset of clinical and genomic features: the maximum circu-

lating tumor DNA (ctDNA) allele frequency (MSAF), sum of

longest diameter of target lesions at baseline (blSLD), and muta-

tion status on the KMT2D, TSC1, ATM, PDGFRA and LRP1B

genes (Figure 4D). MSAF and blSLD likely reflect overall tumor

burden, and low values for these would favor beneficial out-

comes for both ICI and chemotherapy. KMT2D mutations have

been previously associated with immune-inflamed tumor micro-

environment47 and improved benefit from ICI but not chemo-

therapy.48 ATMmutations have also been previously described,

albeit with equivocal results regarding ICI benefit.49,50 With the

exception of ATM mutations, which were both predictive and

prognostic (POPLAR: mutation [Mut] B+ HR = 0.33, wild type

[Wt] B– HR = 0.776; OAK: Mut B+ HR = 0.43, Wt B– HR =

0.68) but with a notably low prevalence (28 patients for ATM

B+/Mut and 205 for the distilled PBMF B+), each individual

feature fell short in matching the biomarker prevalence or the

consistent, predictive signal of the collective (Figure S5F and

Table S5). In comparison with a commonly described single-

feature ICI biomarker, blood TMB,51–53 the PBMF more robustly

enriched for longer survival for both the training and test clinical

trial datasets (Figures 4F, S5G, and Table S5).

Potential applications of the PBMF
The PBMF is an end-to-end application programming interface

(API) capableof integratingwithpretrainedmodelsacrossvarious
datamodalities; for example, genomic, radiomic, andclinical data

(Figure 5A). The modularity of the PBMF, enabled by its compat-

ibilitywith variousdifferentiablemodels, allows it toprocess these

embeddings to discover biomarkers for survival, adverse events,

dosing strategies, and more (Figure 5B).

DISCUSSION

Across diverse, challenging benchmarks spanning simulated

scenarios through informing strategies for patient selection in

clinical trials, the PBMF outperformed other methods for discov-

ering predictive biomarker signals. Among comparator methods,

only the PBMF found signals that were consistently predictive

across training and test datasets. Along with the PBMF’s ability

to accurately identify known IO biomarkers from phase 2/3 trials,

we also showed that the PBMF can nominate a novel composite

biomarker from a set of clinicogenomic features that outper-

formed blood TMB.

We emphasize here the importance of the predictive constraint

embedded in the PBMF. A commonpitfall in biomarker discovery

is to focus only on identifying populations with enhanced re-

sponses to a specific treatment.54 In these cases, one cannot

distinguish between a biomarker that is prognostic versus one

that enriches for better responses specifically in a treatment of in-

terest. Thus, the PBMF contrastive loss function enforces the

constraint that a biomarker must be considered in the context

of a control treatment. Although VT22 and SIDES21 also enforce

such a constraint, they do so by finding groups of patients that

maximize survival difference in the treatment of interest and (in

the opposite direction) the control (Table S1), and in the case of

VT, require an independently trained model for each of the treat-

ment and control. In contrast, the PBMF seeks groups of patients

that simultaneouslymaximize survival difference in treatment and

minimizedifference in control. ThePBMF therefore constrains the

biomarker search space, potentially increasing the chance of

finding a generalizable predictive biomarker; furthermore, formu-

lating the learning objective as a contrastive learning task may

help themodel capture finer similarities and differences between

the control and treatment groups.

In our patient selection strategy example, we successfully

distilled a complex ensemble neural network model into a simple

decision tree. In this regard, we can view the PBMF as a highly

effective search function, as we required the complex model to

discern whether a predictive signal exists and what features

may drive it. While a multivariate Cox proportional hazards

(Cox PH) model could theoretically achieve similar results,9,24,55

it requires explicit and systematic testing of each potential vari-

able and their combinations, making it impractical to implement.

In contrast, the gradient descent within the PBMF implicitly tra-

verses the vast expanse of potential feature combinations and

interactions. Additionally, the PBMF simultaneously accounts

for treatment effects within its loss function, whereas a Cox PH

model requires enumeration of each hypothesized treatment-

feature interaction.

Beyond its contrastive loss function and interpretable tree, the

PBMF stands out as an end-to-end API for predictive biomarker

discovery. Not only does the PBMF ensemble of fully connected

neural networks outperform other methods but the API is also

compatible with any differentiable model and therefore can be
Cancer Cell 43, 1–16, May 12, 2025 11
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Figure 5. Potential future use cases of the PBMF

(A) Data sources for predictive biomarker discovery include patient repositories (e.g., TCGA and UKBiobank), various types of clinical trials (e.g., past failed trials,

basket trials testing multiple treatments), and real-world data. These sources encompass diverse data types, such as genomics, radiomics, imaging, and health

records, which can feed into a ‘‘Model Hub’’ of a variety of pretrained models, including large-language models, generative models, diffusion models, and

traditional machine learning models.

(B) The PBMF leverages embeddings, patterns, and/or synthetic data generated by pretrained models fine-tuned for specific tasks.
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incorporated within larger multi-component AI systems. This

flexibility makes it possible to explore predictive biomarker sig-

nals using input features from single or multiple modalities, or

diverse data representations. For instance, an attention-based

transformer model could effectively model unstructured data

such as clinical notes or histopathology images.56,57 This capa-

bility allows the integration of pretrained models, such as foun-

dation models like large-language models, generative models,

and traditional machine learningmodels, andmore, feeding prior

knowledge into the PBMF and potentially enabling successful

predictive biomarker discovery even in data-limited or noisy con-

texts.58 Paired with pretrained models trained on ever-expand-

ing sets of genomic, radiomic, clinical, and other datatypes,

the PBMF could eventually extract complex embeddings to pre-

dict not only survival outcomes but also adverse events,59 dose-

response relationships, combination therapy effects, and even

back-translate new drug targets. By leveraging synthetic patient

cohorts generated through generative AI, the PBMF may further

accelerate drug development by simulating theoretical trial de-

signs, testing hypotheses before implementation, and optimizing

investment decisions in resource-intensive phase 3 trials. These

applications highlight the PBMF as a central component in a

broader ecosystem for predictive biomarker discovery. With

the integration of other future pretrained models, the PBMF

has the potential to enhance precision medicine by supporting

the discovery of clinically actionable biomarkers.

Specific considerations and limitations apply when using any

predictive biomarker method to inform late-stage clinical trial
12 Cancer Cell 43, 1–16, May 12, 2025
decision-making. As alluded to earlier, data availability is often

limiting. The success of the PBMF in identifying potential predic-

tive biomarkers from real-world data and from using synthetic

control arms is thus promising. Future work will be required to

know whether synthetic control arms from non-randomized evi-

dence (i.e., real-world data) could be used; any such exploration

would need to carefully consider the substantial heterogeneity

within patient populations. For instance, examination of estab-

lished metrics such as the propensity score60 may be required

to evaluate comparability of arms with potentially disparate

baseline characteristics. A related point is that it is often difficult

to ensure that cohorts are comparable across studies, as the

intent-to-treat clinical trial design guarantees only within-trial

comparisons. Moreover, considering the rising trend of combi-

nation therapies, it will be crucial to investigate the PBMF’s per-

formance across various arms and their pairwise combinations.

As our study is retrospective in nature, an important next step

would be to validate the PBMF prospectively in a future clinical

study. Finally, future work can explore the tradeoff between

data maturity, ability to extract a predictive signal, and phase 3

trial investment decision timing.

Our benchmarks nonetheless demonstrate that with the avail-

ability of the appropriate data, the PBMF could nominate a pre-

dictive biomarker that is likely to outperform the original study

design in selecting patients who would derive greater benefit

from the new treatment in a phase 3 study. The use of the

PBMF has the potential to improve strategies for patient selec-

tion over what can be achieved with conventional study designs.
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Limitations of the study
Despite its strengths, the PBMF has limitations that are common

to many biomarker discovery methods. First, there is no guar-

antee that a predictive signal exists among the available fea-

tures in a given cohort. Indeed, many well-established clinical

datasets for survival analysis contain only age and/or sex fea-

tures, and only prognostic biomarkers can be found with

any modeling approach. Related to the known challenge of

limited datasets and high heterogeneity in patient populations,

the PBMF cannot be used to determine whether the data are

adequate and representative of the target population and

biology. Nevertheless, it is noteworthy that the PBMF demon-

strated superior performance in scenarios with small data sizes.

In situations with substantial data, PBMF scaled with data size,

whereas the performance of the VT method reached a plateau.

Second, the ensemble PBMF may be unable to maintain its

magnitude of predictive power when distilled into a simple

model, as there is often a tradeoff between a biomarker’s pre-

dictive power and its parsimony.61 However, the enhanced

interpretability of the model may contribute to a better under-

standing of the biological factors underpinning the predictive

signal of the biomarker. More generally, with any biomarker

nomination process, there is the risk of overfitting to the training

data and lack of generalization when the biomarker is deployed

prospectively. Encouragingly, at least within the scope of the

current study, the PBMF provided concordant results between

training and test sets and to a greater degree than the compared

methods. Third, while the PBMF outperformed other methods in

discerning predictive signals from noisy or prognostic features,

we might still find that strongly prognostic features can impede

the identification of predictive signals, and therefore our method

could potentially gain more from prior feature selection. Fourth,

the PBMF’s contrastive loss function formulation tends to atten-

uate the discovery of biomarkers that show a modest positive

effect in the control treatment but a more substantial benefit in

the treatment of interest. Finally, the PBMF is a discovery tool,

and any biomarker hypothesis requires prospective clinical vali-

dation.62–64 Acknowledging these limitations, we recommend

best practices for hyperparameters and usage of the PBMF in

Table S6.
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biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/

Multivariable_Model-building/rotterdam_br_ca.zip
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Royston and Sauerbrei25 https://www.uniklinik-freiburg.de/fileadmin/mediapool/08_institute/

biometrie-statistik/Dateien/Studium_und_Lehre/Lehrbuecher/

Multivariable_Model-building/gbsg_br_ca.zip

Diabetic retinopathy Drysdale65 https://github.com/ErikinBC/SurvSet/blob/main/

SurvSet/_datagen/output/retinopathy.csv

POSEIDON Johnson et al.31 Data may be obtained in accordance with AstraZeneca’s data sharing

policy described at https://astrazenecagrouptrials.pharmacm.com/

ST/Submission/Disclosure. Data for POSEIDON (NCT03164616) can be

requested through Vivli at https://vivli.org/members/enquiries-about-

studies-not-listed-on-the-vivli-platform/

JAVELIN 101 Motzer et al.68 Table S15; https://static-content.springer.com/esm/

art%3A10.1038%2Fs41591-020-1044-8/MediaObjects/

41591_2020_1044_MOESM3_ESM.xlsx

IMmotion 150 Yuen et al.66 Table S3; https://static-content.springer.com/esm/

art%3A10.1038%2Fs41591-020-0860-1/MediaObjects/

41591_2020_860_MOESM1_ESM.xlsx
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MediaObjects/41591_2020_839_MOESM2_ESM.xlsx
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esm/art%3A10.1038%2Fs41591-020-0839-y/

MediaObjects/41591_2020_839_MOESM2_ESM.xlsx

CheckMate 025 Braun et al.67 Table S1 and 4C; https://static-content.springer.com/

esm/art%3A10.1038%2Fs41591-020-0839-y/

MediaObjects/41591_2020_839_MOESM2_ESM.xlsx

IMvigor 210 Yuen et al.66 Table S3; https://static-content.springer.com/esm/

art%3A10.1038%2Fs41591-020-0860-1/MediaObjects/

41591_2020_860_MOESM1_ESM.xlsx

IMvigor 211 Yuen et al.66 Table S3; https://static-content.springer.com/esm/

art%3A10.1038%2Fs41591-020-0860-1/MediaObjects/

41591_2020_860_MOESM1_ESM.xlsx

POPLAR Gandara et al.51 Table S8; https://static-content.springer.com/esm/

art%3A10.1038%2Fs41591-018-0134-3/MediaObjects/

41591_2018_134_MOESM3_ESM.xlsx

OAK Gandara et al.51 Table S8; https://static-content.springer.com/esm/

art%3A10.1038%2Fs41591-018-0134-3/MediaObjects/

41591_2018_134_MOESM3_ESM.xlsx

Software and algorithms

Python Python Software Foundation Version 3.6.9; RRID: SCR_008394; http://www.python.org/

scikit-learn Pedregosa et al.78 Version 0.24.1; RRID: SCR_002577; http://scikit-learn.org/

Lifelines Davidson-Pilon82 Version 0.26.0; RRID: SCR_024899; https://lifelines.readthedocs.io/

Tensorflow Google Version 2.6.0; RRID: SCR_016345; https://www.tensorflow.org/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Real-world and clinical data sets
Original clinical trial publications provide details on study design and patient demographics. With the exception of Tempus and

POSEIDON data, patient-level and biomarker data required for our analyses were only available in follow-up publications. Therefore,

we have cited the original clinical trial papers to acknowledge the foundational studies and their design, while also referencing the

follow-up publications where we obtained the necessary data for our analyses.

For clinical data derived from public sources (Rotterdam and German study cohorts, Diabetic retinopathy, JAVELIN Renal 101

[NCT02684006], IMmotion150[NCT01984242], CheckMate 09-010-025[NCT01358721, NCT01354431, NCT01668784], IMvigor210-

211[NCT02108652,NCT02302807],POPLAR[NCT01903993], andOAK[NCT02008227]) studydesigns (whereapplicable) and informa-

tion (where available) related to age, sex, ancestry, race, ethnicity, and socioeconomic status can be found in publications cited in

Table S3. For POSEIDON (NCT03164616), such demographic information is also available in its source publication (Table S4). The

POSEIDON protocol and any amendments were approved by Institutional Review Boards or Ethics Committees of participating cen-

ters, and all patients provided written informed consent. For TEMPUS, all Tempus data were de-identified in accordance to the Health

Insurance Portability and Accountability Act (HIPAA). Available demographic information is listed in Table S3.

Prior to any modeling, features were selected as specified in Table S3. Hyperparameters (Table S2) were tuned for the PBMF, VT,

and SIDES for each clinical dataset, using only training data. Total sample numbers for all studies are summarized in Table 1.

The Rotterdam breast cancer cohort26 (863 patients) was used as a training data set, and the German breast cancer study cohort27

(686 patients) was used as a test data set.We selected only patients treatedwith hormone-based treatments and chemotherapy. The

7 features used for training the PBMF are age, menopause, tumor size, tumor grade, number of nodes, pr (progesterone receptor

status), and er (estrogen receptor status). We trained the model using overall survival and death. Data were downloaded from Roy-

ston and Sauerbrei.25

The diabetic RETINOPATHY study28 evaluates the treatment of laser coagulation to delay diabetic retinopathy. In this study, 197

patients underwent treatment in one eye, while the other eye remained untreated. The treatment eye, right or left, was randomized.

Treating each eye as an individual sample resulted in 394 observations in the dataset. The event of interest was the time from the start

of treatment to the time when visual acuity dropped below 5/200 for two visits in a row. Censoring was caused by death, dropout, or

the end of the study. Age of diabetes onset, diabetes type, and risk score were included as the features of this dataset. Diabetes type

was a binary feature indicating juvenile diabetes (diagnosis before age 20) or adult. Risk score was defined by the Diabetic Retinop-

athy Study, and a score greater than 6 out of 12 indicates high risk. Only individuals with risk scoreR 6 were available in the dataset.

The dataset was split into training and testing at a prevalence of 50% (random seed = 0). Data were downloaded from SurvSet.65

The randomized phase 2 clinical trial IMmotion15030 evaluated the efficacy of atezolizumab (anti-PD-L1) alone or in combination

with bevacizumab (anti-VEGF) versus sunitinib (RTK inhibitor) in treatment-naive metastatic renal cell carcinoma (mRCC). Data from

IMmotion150 was downloaded from Yuen et al.66 and comprised a total of 248 patients with no missing values (84 atezolizumab, 81

sunitinib, and 83 atezolizumab + bevacizumab). Available features on this dataset: age, sex, liver metastasis, previous nephrectomy,

T-cell effector signature score (binarized into high vs. low via median cutoff), Plasma IL8, SLD (sum of longest tumor diameter) and

sample type (primary / metastatic). IMmotion150 dataset was split into training / testing with a 50% prevalence, stratified by treat-

ment and overall survival event (random seed = 0). The PBMF was trained to discriminate between atezolizumab + bevacizumab

against sunitinib using overall survival time and event as endpoints.

The JAVELIN Renal 101 trial29 evaluated the effectiveness of avelumab (PD-L1) plus axitinib (chemotherapy) versus sunitinib in

advanced renal cell carcinoma (aRCC). Clinical response, PD-L1 status and RNA derived signatures (pathway scores) were down-

loaded from the biomarker analysis publication reported by Motzer et al.68 A total of 59 signatures were used, including tumor micro-

environment-derived signatures (e.g., T-cells, B-cells, Macrophages), pathway-derived signatures (e.g., cell cycle, lipid metabolism,

cell-cell signaling), PD-L1 status, and the 26-gene signature (B9991003_Javelin_Renal_101_genes26) reported in the publication

(Table S4). In total 726 patients (372 sunitinib, 354 avelumab+axitinib) were retrieved. The data was split into training and testing

with a 50% prevalence (random seed = 0) stratified by treatment and survival event. The PBMF was trained to identify a sub-popu-

lation predictive of avelumab+axitinib against sunitinib using progressive free survival time and event as endpoints.

POSEIDON31 is a phase 3 randomized clinical trial that evaluated the efficacy of durvalumabplus tremelimumabplus chemotherapy

and durvalumab plus chemotherapy against chemotherapy alone in first-line metastatic non-small-cell lung cancer (mNSCLC).31 In

this study, we focused on peripheral blood RNA seq data for durvalumab + chemotherapy (114 patients) and chemotherapy alone
e2 Cancer Cell 43, 1–16.e1–e8, May 12, 2025

https://drive.google.com/file/d/1auc3GOspjWYFCgOuMgUfrqZwCHHkZdHy/view
https://drive.google.com/file/d/1auc3GOspjWYFCgOuMgUfrqZwCHHkZdHy/view
https://biopharmnet.com/subgroup-analysis-software/
https://square.github.io/pysurvival/
https://doi.org/10.5281/zenodo.14766044


ll
OPEN ACCESSArticle

Please cite this article in press as: Arango-Argoty et al., AI-driven predictive biomarker discovery with contrastive learning to improve clinical trial out-
comes, Cancer Cell (2025), https://doi.org/10.1016/j.ccell.2025.03.029
(114 patients) treatment arms. RNA seqdatawas Log2(TPM+0.001) transformed, andwe extracted a set of customand publicly avail-

able tumor microenvironment-related signatures43 (Table S4) using the median score across genes. Dataset is split into training /

testing with a 50% prevalence (random seed = 0) stratified by treatment and event. PBMF was trained using to identify predictive

biomarker of durvalumab + chemotherapy against chemotherapy alone using overall survival time and event as endpoints.

Data from the Tempus NSCLC cohort were selected from the Tempus deidentified multimodal database.69 Patients were included

if they were diagnosed with a primary or metastatic NSCLC diagnosis on or after 2016, confirmed by histology, and received chemo-

therapy or ICIs as first treatment. For these patients, real-world overall survival was calculated using treatment start date as the index

date. RNA expression (batch-corrected and transformed to transcripts per million) data was obtained for pre-treatment samples. In

the case of patients with multiple biopsies, only the closest one to treatment start date was selected. ssGSEA (corto R package) was

run per RNA sample for the 50 cancer hallmark gene sets (msigDB C5).45,70 A total of 201 patients with stage 4 NSCLC undergoing

chemotherapy (84) or immunotherapy (117) were selected. The data set was equally split into training and testing (50% each) and

stratified by treatment (random seed = 0). The training set had 42 patients with chemotherapy and 58 with immunooncology treat-

ment; and the testing set had 42 patients with chemotherapy and 59 with immunooncology treatment. We used overall survival and

death as endpoints for training the PBMF model.

The POPLAR41 and OAK42 clinical trials were used to represent phases 2 and 3, respectively, to evaluate the efficacy of atezoli-

zumab as a second-line therapy for patients unresponsive to first-line platinum-based chemotherapy in the NSCLC population. The

therapeutic potential of atezolizumab was compared against that of docetaxel. The dataset, sourced from Gandara et al.,51 encom-

passes ctDNA from blood samples in addition to patient demographics and clinical biomarkers, as detailed in Table S4.We conduct-

ed a prevalence-based ranking of ctDNA genes from patients in the POPLAR trial, identifying the top 20 genes that exhibit a minimum

prevalence of 20%across the combined data set from both atezolizumab and docetaxel cohorts. The PBMFwas not trained by using

progression-free survival, and this outcome was used for testing only. POPLAR trial data were used for training the PBMF, and OAK

was used for independent evaluation. We used the overall survival time and event as endpoints.

The CheckMate prospective clinical trials 009,38 010,36 and 02537 were designed to evaluate the efficacy of nivolumab (PD-1

blockade) against everolimus (mTOR inhibition) in advanced clear cell renal carcinoma (ccRCC). RNA sequencing (RNA-seq) and

whole-exome sequencing (WES) derived features were obtained from Braun et al.67 The PBMF was trained using the phase 2

CheckMate 010 clinical trial data and validated on the combined populations of CheckMate 025 and CheckMate 009. We included

only patients with a complete set of features, excluding any with missing data. Consequently, 199 patients out of the available 311

had all complete features. Among these, 25 patients were from the Phase 2 (CheckMate 010) clinical trial. As CheckMate 010 did not

have a control arm, we randomly selected 25 patients from the CheckMate 025 everolimus arm to match the number of patients

treated with nivolumab. The remaining patients from CheckMate 009 and the Phase 3 CheckMate 025 trial were utilized for indepen-

dent validation (i.e. test data set). Overall survival time and event status were used as endpoints for training the PBMF. The complete

list of features used for training are shown in the Table S4.

IMvigor21039 is a single-arm phase 2 clinical trial evaluating the efficacy of atezolizumab as a first (1L) or second (2+) line of treat-

ment in locally advanced or metastatic urothelial carcinoma (mUC). IMvigor21140 is a randomized phase 3 clinical trial that evaluated

the efficacy of atezolizumab compared to chemotherapy in metastatic urothelial carcinoma as a second (2+) line of treatment. Data

from IMvigor210 and 211 was downloaded from supplementary material of Yuen et al.66 Both studies reported a total of 1222 pa-

tients. We only kept patients without missing values and filtered out all patients that were treated with Atezo as a first line of treatment

in order to match the phase 3 (IMvigor211) population. In total we obtained 691 patients (422 atezolzumab and 269 chemotherapy).

For training, we selected all patients from the IMvigor210 atezolizumab arm. As control, we selected 100 patients from the chemo-

therapy arm from the IMvigor211 phase 3 trial. For test data, we used all the patients on the phase 3 (IMvigor211), except the patients

from chemotherapy that were used during training. The features in these cohorts include: age, sex, liver metastasis, ECOG, plasma

IL8 at baseline (C1D1) and after treatment IL8 (C3D1) as well as plasma IL8 ratio (C3D1/C1D1). Therefore, this analysis is not limited to

baseline measurements as on-treatment increased expression of plasma IL8 are known to be predictive of worse overall survival for

atezolizumab and not for chemotherapy.66 The PBMF was trained to identify predictive biomarkers of atezolizumab against chemo-

therapy using overall survival time and event in the IMvigor210 cohort and validated on the IMvigor211 trial.

METHOD DETAILS

Predictive biomarkers, contrastive learning, and model architecture
We define a predictive biomarker, B, as a tool categorizing a population into positive (B+) or negative (B–) for the biomarker, specific

to a given treatment. B can encompass various patient measurements (e.g., age, blood counts, RNA gene expression). The

biomarker is predictive if the B+ subpopulation is selectively enriched for individuals benefitting from a treatment of interest (‘‘treat-

ment’’), but not a comparator one (‘‘control’’; Figure 1D, top). Similarly, the B– subpopulation should be selectively enriched for those

not benefiting from any treatment, or perhaps benefiting instead from a comparator. In contrast, a prognostic biomarker is charac-

terized by similar benefit irrespective of treatment.

With this definition, we formulated the PBMF to distinguish between two patient populations based on their differential response to

treatments, i.e. contrastive learning. Specifically, the training objective of the PBMF (i.e. its loss function) actively maximizes the dif-

ferences in outcomes for a given treatment (similar to pushing apart dissimilar items in contrastive learning) for B+ versus B– patients.

Simultaneously, it minimizes the differences in outcomes for the control arm (similar to bringing similar items closer in contrastive
Cancer Cell 43, 1–16.e1–e8, May 12, 2025 e3
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learning). By doing so, the network is trained to contrast the effects of two treatments across the biomarker-defined groups, effec-

tively learning the distinctive features that separate patient responses. More formally from a technical perspective, the loss function is

defined as the ratio between control and treatment log-rank test statistics (Figure 1A; see STAR Methods section ‘‘predictive

biomarker loss function’’). In plain terms, this has the effect of maximizing the separation of survival curves (or generally, for any

time-to-event curves) between B+ and B– in the subpopulation receiving the treatment (i.e. large log-rank test statistic) while mini-

mizing the separation for the subpopulation receiving the control. The model therefore optimizes for predictive biomarker behavior

(Figures 1A and 1D). For applications requiring a particular biomarker prevalence, the PBMF can be run with an optional constraint

(specifically, a penalization term) to encourage a predefined B+ prevalence proportion.

We designed the PBMF to be flexible and usable by the technical community (via an application programming interface). In partic-

ular, its modular design allows use of any neural network-based machine learning model, including deep, convolutional, and atten-

tion-based networks. The PBMF can use data from anymodality (e.g., genomics, clinical, imaging), without restriction on the number

or type (e.g., categorical or continuous). The PBMF outputs a ‘‘confidence’’ (i.e. probability) score from 0 to 1, which can be used

(strictly speaking as a likelihood) to assign a sample to the B+ or B– subpopulation.

Model implementation and extensions
Overfitting poses a significant challenge in biomarker discovery, due to heterogeneity in patient populations and large numbers of

features, particularly when attempting to predict the efficacy of one treatment over another rather than that of a single treatment.

The PBMF therefore incorporates an established solution to increase model robustness by allowing training of a diverse collection

of models (i.e.M independently trained neural networks), also known as an ensemble (Figure 1A), and then aggregating the ensemble

predictions to yield a better prediction than any ensemble constituent. Model diversity is achieved by allowing each model to learn

with a unique random subset of samples and features (akin to themachine learning principle of bagging71; Table S2). Followingmodel

training, we provide a solution whereby one can optionally remove poor performing models in the ensemble, i.e. model pruning,

which can further enhance ensemble performance (Figure 1A).

Finally, anopaqueneural network in thePBMF-generatedbiomarkermaycompromise confidenceandhinder applicability in clinical

settings. Toaddress this, thePBMF incorporates anoptional pipeline for simplifying themodel (‘model distillation’ or ‘knowledgedistil-

lation’) into a parsimonious, interpretable decision tree. This is achieved by training a decision tree classifier on the subset of samples

for which the ensemble had the highest confidence scores (Figure 3A). This decision tree thus transforms the candidate predictive

biomarker into a simple set of rules, facilitating seamless integration into the design of future clinical studies (Figures 4A–4E, and 4F).

To facilitate usability, recommendations for PBMF hyperparameters are provided in Table S6.

Predictive biomarker loss function
The PBMF (Figure 1A) uses as input time-to-event data with censoring, a treatment label, and a feature matrix (S patients by F fea-

tures). The feature matrix X ˛ℝF is used as the input to a fully connected neural network of user-defined depth and width. The PBMF

was implemented in Tensorflow (https://www.tensorflow.org/).

The goal of the neural network is to assign patients to either the B+ or B– group. To refine this categorization, we employed a

contrastive learning approach in which patients in the B+ group, when under treatment, show an improvement in survival times

compared with those in the B– group. Conversely, in the control arm, the model aims to minimize the differences in survival times

between the two biomarker groups according to the principle of contrastive learning.72–74

The distinction or similarity in survival times is quantified using log rank test statistics75 within each treatment arm as follows:

TLogRankðaÞ =

�
E+
a � O+

a

�2
E+
a

+

�
E�
a � O�

a

�2
E�
a

where the E+
a ; E

�
a pair represents the expected number of events for the treatment a, under B+ and B–, respectively. TheO+

a ;O
�
a pair

depicts the observed events within the treatment a for B+ and B–, respectively.

Formally, the expected and observed events are defined as follows:
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where the treatment arm is defined by a ˛{Treatment (Tr), Control (CR)} and the indicator function I(Ai = a) determines whether the

patient i is under treatment a or not. The biomarker group is defined by the output of the neural network where b ˛ {positive (+),
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negative (–)}. Therefore, each patient i has a probability of being labeled as being in the positive (B+
i ) or negative (B�

i ) group. Ci rep-

resents the censoring status of patient I, and li is a scalar independent on the parameters of the neural network and can be precal-

culated (see Meier et al.76). Ut is the number of observed events at time t, and Nt is the number of subjects at risk at time t.

The log-rank test for the treatment and control is then defined as:
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The contrastive nature of the loss function is evident in its formulation as follows:

d Treatment arm optimization: For patients receiving the actual treatment, the model maximizes the survival time difference be-

tween B+ and B– groups. This is quantified by the treatment log rank test score, LR(Tr).

d Control arm optimization: For the control group, the model minimizes the survival time difference between the two biomarker

groups. This is quantified by the control log rank test score, LR(Cr).

The contrastive loss for the predictive biomarker is then defined as the ratio between the control log rank test score by the treat-

ment log-rank test score:

lossb =
LRðCrÞ
LRðTrÞ :

The custom contrastive loss is the ratio of two log-rank tests computed over the time-to-event data, grouped by the treatment la-

bel, and stratified by the neural network output score. During optimization, the neural network learns a set of parameters that outputs

scores to maximize the separation (i.e., larger log-rank test statistic) for the treatment while minimizing the separation (i.e., smaller

log-rank test statistic) for the control. This ensures that the neural network will learn to generate a predictive biomarker score, since

it will only stratify patients for a specific treatment.

We also integrated a population prevalence term to the loss to enable the model to identify a predictive biomarker given a specific

desired minimal population (minP) such that:

prevðB+Þ =

PN
i B

+
iPN

i

�
B+

i +B
�
i

�

lossp =

�
prevðB+Þ
minP

� 1

�2

The lossp will have a minimum value of 0 when minP is equal to the population of B+. Finally, the composite PBMF loss function

takes the following form:

Loss = u1 � lossb +u2 � lossp
where u1 and u2 dictate the contribution of each loss component. For example, when u2 = 0, the PBMF finds a population with the

best predictive power independent of the number of patients, and when u2 = 0.5 the PBMF identifies a predictive biomarker of the

treatment at a 50% patient prevalence.

Biomarker scoring
The output of the neural network (B ˛ ℝ2) is composed of two units representing the B+ and B– scores {b+, b–}. Scores are then

passed through a SoftMax activation to convert the network scores into probabilities. Thus, the biomarker scores for a given patient

i can be expressed as:

B+
i =

eb+
i

eb+
i +eb�

i

; B�
i =

eb�
i

eb+
i +eb�

i

The probability of the negative biomarker can be written as B– = (1 – B+). In this way, B+ values close to 0 indicate B– and values

close to 1 indicate B+. We assume the B+ to be contained within the neuron at index 0 from the output of the neural network. How-

ever, because the loss function does not have control of the directionality of the assignments, B+ can be arbitrary placed in neuron

at the index 0 or 1. Therefore, after training and when making predictions, we corrected the B+ by computing the HR between the
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B+ and B– within the treatment arm as HRTreatment =

P
O+=
P

O�P
E+=
P

E� . Thus, an HRTreatment < 1 defines the B+ in the neuron 0, whereas an

HRTreatment > 1 defines the biomarker positive in the neuron 1.

With ensemble of neural networks, for a given patient i and a total of M neural network models, we generated a set of scores

fB+
i;1;.;B+

i;Mg and computed a consensus score defined by the average score over all the models in the patient i such that B+
i =

1
M

PM
m = 1 B

+
i;m.

Since the final output of the PBMF assigns each sample to one of two groups (B+ and B–), the predictive biomarker identification

task could be considered as a form of clustering. In this respect, our contrastive loss would serve as the clustering distance metric.

Feature and patient subsetting during model training
A random subset of patients and features can be specified (Table S2) to guard against model overfitting. Patient subsetting (‘Ignore

patients during loss computation, ifrac’) is performed before model loss computation, and a different subset of patients will be

excluded at each gradient update. Feature subsetting (‘Use only n features [for each model if using an ensemble]’) is performed

before model training, and the given model will only train on the feature subset; when training an ensemble, each model will utilize

its own unique random subset. During ensemble model evaluation, no patients or features are excluded.

PBMF ensemble model pruning
Under the assumption that some models in the ensemble perform poorly and damage the entire ensemble’s performance, we im-

plemented the following model pruning approach. We first binarized the set of scores, fB+
i;1;.;B+

i;Mg, generated from the trained

ensemble, using the default 0.5 score threshold for the PBMF. Using this S patients byMmodels binary matrix, R, we then compute

an S 3 S patient agreement matrix, A, by calculating the proportion of models that assigned two different patients to the same

class77:

Aij =
1

M

XM
k = 1

IðRik = RjkÞ

A contains 1 along its diagonal, is symmetric, and contains values ˛ [0,1]. Patients with similar scores across each model in the

ensemble will tend to have higher values; those with dissimilar scores will have lower values. Each column or row of A represents

how consistently patients were assigned to a particular class by the models in the ensemble, from the reference point of one patient.

We then computed the Pearson correlation between each column in A with each column in R to generate an S 3 M matrix, C, of

correlation coefficients that represents howwell the patient scores from an individual model in the ensemble correlatewith the patient

agreement matrix. We assumed that only a minority of models have poor performance, such that we should keep models that agree

on howpatients should be scored and discardmodels that disagree. This was done by selecting a percentile, p, e.g., the 90th percen-

tile of all the correlations. By thresholding on the value in C associated with this percentile, the models were sorted by the number of

times that each model exceeded the threshold, to generate a 13M vector of counts. We then thresholded on the value associated

with our percentile in this vector to return the final subset of models,MS, that exceed this threshold. A new consensus score was then

computed as the average score across the reduced set of models in the ensemble.

Model distillation: pseudo-labeling
The distribution of scores generated from the ensemble is used to identify patients with ‘‘high-quality’’ predictions, i.e., those whose

distributions are heavily skewed toward 0 (strongly B–) or 1 (strongly B+).

To identify the patients with the best high-quality scores, we choose a 0.5 cut point and add an offset value ε, such that the

biomarker label for a patient i i is defined as:

Li =

8<
:

B+ if Cs > 0:5+ ε

B� if cs< 0:5�ε

No biomarker other case

We set ε˛ {0, 0.1, 0.2, 0.3, 0.4} and then fitted a Cox PHmodel to compute the hazard ratios between the treatment and the control

arms for both the B+ andB–. The optimal ε score is extracted by determining themaximumdifference between the absolute log of the

B+ and B– hazard ratios.

optimal ε = Max
εi ˛ εfjlogðHR+

εi
Þ � logðHR�

εi
Þjg

We then applied the optimal ε to compute a reduced set of patients with high-quality scores.

Model distillation: tree-based model explainability
Once the high-quality population is defined, a tree classifier (Python sklearn78 tree classifier package, random_seed = 0) is fit, using

the input features and the B+ and B– as the labels. The goal of the tree classifier is to define a simple rule that approximates the neural

network-derived predictive biomarker. In practice, a tree classifier is fit for each of max_depth = 1, 2,., 19 and a final tree classifier

model for explainability is chosen as that with the smallest max_depth which maximizes the training set AUROC. Although the tree
e6 Cancer Cell 43, 1–16.e1–e8, May 12, 2025
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model is trained on only a subset of patients with ‘‘high quality’’ scores, it is used to predict the biomarker status on all training sam-

ples or test data set samples.

VT implementation
We implemented the VT approach proposed by Foster et al.22 as follows. We used a random survival forest model79 to predict time-

to-event based on the log-rank test loss (pySurvival80). We built two survival models {MT,MC}, where T and C refer to the population

under treatment and under the control, respectively. Eachmodel was trained using only its respective population. We then computed

the difference in risk score between the treatment and control models to define the counterfactual risk score ri =MT(i) –MC(i) for any

given patient i.

To stratify patients intoB+andB–,wecomputed themedian valueof thecounterfactual risk scoredistributionacrossall patients and

assigned to B+ those patients below the median score (low risk) and to B– those with a counterfactual risk score above the median.

Consequently, this design choice intrinsically classified patients evenly, 50%being assigned to B+ and the remaining 50% to B–. This

can potentially lead to an overestimation of favorable results in data sets where the predictive biomarker prevalence is 50%.

For simulations, model hyperparameters were tuned as described in Supplemental Information and Table S7. Model hyperpara-

meters for identifying predictive biomarkers for clinical studies is described in Table S2.

SIDES implementation
The SIDES algorithm was set for survival analysis using the time and event features as the targets and the treatment versus control

setting. The features used were the same as those used for PBMF and VT and depended on the analyzed data set. We used the R

implementation of SIDES provided by the SIDES authors (sides.dylib, CSIDES.r, and stochSIDES_util.R). We selected the best

biomarker sorted by the adjusted P value and assigned it as B+. The discovered predictive biomarker rule was then validated

in a given independent test set. Model hyperparameters for identifying predictive biomarkers for clinical studies is described in

Table S2.

Synthetic data generation
We generated 10,000 patients for each data set. For a given replicate, 2000 patients (20%) were randomly selected, without replace-

ment. Among those selected, a 50-50 training/test split was performed. Evaluation metrics are reported only from the test set. Pro-

portional hazard assumptions were imposed to induce each one of the behaviors (Figure S1A). The ability of each methodology to

correctly call the biomarker wasmeasured by recording the precision, recall, and AUPRC of a holdout test data set (2000 patients for

each data set).

The generation of synthetic data sets involves three stages. Initially, a set of covariates with predetermined level of correlation and

prevalence is defined (Figure S1A). These covariates establish subgroups for which desired hazard ratios will be generated. For the

parametric model, the cumulative hazard is

HiðtÞ = lðtgÞexp�XT
i b
�

Where Xi is a vector of covariates associated to the parameters b. The bparameters used to sample survival times can be estimated

after setting the HR requirements between groups. For example, assuming a treatment variable and a predictive biomarker, we can

define the following hazard ratios:

HRControl;B+vs B� = HR1
HRTreatment;B+vs B� = HR2
HRB+;Treatment vs Control = HR3
HRB�;Treatment vs Control = HR4

The time-independent part of HiðtÞ can be expanded as:

Hi � exp ðbtrttrti + bx1x1i + btrt� x1trtix1iÞ
Replacing for each one of the cases in equation 1, we obtain the following equations:

logðHR1Þ = bx1
logðHR2Þ = bx1 + btrt� x1
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logðHR3Þ = btrt + btrt� x1
logðHR4Þ = btrt

Random survival times are then obtained using the technique outlined in Crowther and Lambert,81

ti =

 
� log ðuÞ

l exp
�
XT
i b
�
!1

g

where l and g and are the scale and shape parameters, and u is a random variable sampled from the uniform distributionU(0, 1). Note

that additional censoring, not covered in this work, can also be introduced.

Creating uncorrelated covariate matrix for simulations
To properly control the relationship between covariates, we simulated random multivariate normal with specific covariance matrix.

Although induced covariancemay be interesting in some cases, we forced all the features to be fully uncorrelated by using an identity

matrix as a covariance matrix. To ease the definitions of the hazard ratio group in the next stage, a binarization process was per-

formed in each feature. To create a particular prevalence, the binarization was done at the specific percentile desired in each feature.

This step was followed by multiplication of the features and treatment to the level needed (i.e., first-order interaction, two feature in-

teractions or higher). The next step is the definition of the underlying hazard ratios structure, meaning the definition of how many

different groups will be in the data and the relative hazard between them. Once the values of the parametric model are defined,

the covariate extended matrix is used to create survival times by sampling from the inverted hazard function. Once the times are ob-

tained, it is possible to increase the complexity of the data set by inducing extra noise in several ways. For example, while fully

random features can be added at the beginning in the covariate matrix and then have their parameters in the hazard function set

to 1, extra noise can be added to the predictive and prognostic features to transform the features from binary back to continuous.

Optimizing virtual twins for simulations
To perform a fair comparison between the performance of virtual twins and the PBMF, a grid search was conducted over various

hyperparameters for the random forest used in the virtual twins model. Different values for the number of features chosen in each

split, the maximum depth of each tree, and the number of trees in the forest were evaluated (Table S7). Similar data to the one

used during the experiments was created. In this case a dataset containing the predictive biomarker (2 features) in addition to 3

random features was used to train and evaluate these models. For each combination of hyperparameters, 10 different splits of

the training and test set were generated from 80% of the data. After evaluating the results for each model trained on a different split

of the data, we recorded the mean and standard deviation of the AUPRC for both the training and test sets. The best-performing

model from the search was trained with 4 features in each split, 200 trees in the ensemble, and amaximum depth of 5, which resulted

in a training AUPRC of 0.946 ± 0.014 and a testing AUPRC of 0.933 ± 0.015.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hazard ratios and 95% confidence intervals were computed by fitting a univariate Cox proportional hazards model (lifelines Python

package82) to the survival data, within a given PBMF biomarker group, and using the treatment as the only covariate. P-values for

hazard ratios were computedwith aWald test.When comparing survival distributions across treatments for a given biomarker group,

a logrank test statistic and its associated p-value was computed and reported. Because our analyses are all retrospective, we avoid

specifying statistical significance thresholds and instead faithfully report all p-values.

Model performance on synthetic datasets was evaluated using the AUPRCmetric. This was chosen because we assume that iden-

tification of biomarker positive individuals is most important for biomarker discovery, and that a minority of individuals will be

biomarker positive for any given real data cohort. Therefore, metrics that equally weight model performance in identifying biomarker

positives and negatives, such as area under the receiving operator characteristic curve, may be poor choices. AUPRC was not re-

ported for clinical datasets due to lack of ground truth.
e8 Cancer Cell 43, 1–16.e1–e8, May 12, 2025
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